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Abstract—It is often assumed that to maximize the perfor-
mance of a multithreaded application, the number of threads
created should equal the number of cores. While this may be true
for systems with four or eight cores, this is not true for systems
with larger number of cores. Our experiments with PARSEC
programs on a 24-core machine demonstrate this. Therefore,
dynamically determining the appropriate number of threads for
a multithreaded application is an important unsolved problem.
In this paper we develop a simple technique for dynamically
determining appropriate number of threads without recompiling
the application or using complex compilation techniques or mod-
ifying Operating System policies. We first present a scalability
study of eight programs from PARSEC conducted on a 24 core
Dell PowerEdge R905 server running OpenSolaris.2009.06 for
numbers of threads ranging from a few threads to 128 threads.
Our study shows that not only does the maximum speedup
achieved by these programs vary widely (from 3.6x to 21.9x), the
number of threads that produce maximum speedups also vary
widely (from 16 to 63 threads). By understanding the overall
speedup behavior of these programs we identify the critical
Operating System level factors that explain why the speedups
vary with the number of threads. As an application of these
observations, we develop a framework called “Thread Reinforcer”
that dynamically monitors program’s execution to search for the
number of threads that are likely to yield best speedups. Thread
Reinforcer identifies optimal or near optimal number of threads
for most of the PARSEC programs studied and as well as for
SPEC OMP and PBZIP2 programs.

I. Introduction
With the widespread availability of multicore systems a

great deal of interest has arisen in developing techniques for
delivering performance on multicore systems. Towards this end
many studies are being conducted to study the performance
of multithreaded workloads such as PARSEC on small scale
multicore machines [1]–[3], [5], [24]. Since performance of a
multithreaded application depends upon the number of threads
used to run on a multi-core system, finding appropriate number
of threads for getting best performance is very important. Using
few threads leads to under utilization of system resources
and using too many threads degrades application performance
because of lock-contention and contention of shared resources.
One simple off-line method is to run the application with
different number of threads and choose the appropriate number
of threads that gives best performance. However, this is time-
consuming, does not work if the number of threads is input
dependent, does not adapt to the system’s dynamic behavior,
and therefore is not a practical solution. It is often assumed

that to maximize performance the number of threads should
equal the number of cores [1]–[3], [5], [24], [28]. While this
is true for systems with 4 cores or 8 cores, it is not true for
systems with larger number of cores (see Table III).

On a machine with few cores, binding [12], [24], [28] (one-
thread-per-core model) with #threads == #cores may slightly
improve performance; but this is not true for machines with
larger number cores. As shown in Figure 1, we conducted exper-
iments with one-thread-per-core binding model and observed
that for most programs performance is significantly worse.
For example, swaptions performs best with 32 threads without
binding on our 24-core machine. When it is run with 24 threads
without binding the performance loss is 9% and with binding
the performance loss is 17%. Likewise, ferret performs best
with 63 threads without binding on our 24-core machine. If we
use one-thread-per-core binding model, then performance loss
of ferret is 54%. Performance losses of facesim and bodytrack
are also significant. More significantly, memory-intensive and
high lock-contention programs experience severe performance
degradation with binding on large number core machines. The
problem with binding is that bounded thread may not get to
run promptly. Thus, dynamically finding a suitable number of
threads for a multi-threaded application to optimize system
resources in a multi-core environment is an important open
problem.

The existing dynamic compilation techniques [6] for finding
appropriate number of threads are quite complex. In [6] authors
noted that the Operating System (OS) and hardware likely
cannot infer enough information about the application to make
effective choices such as determining how many number of
threads an application should leverage. However, since the
modern OSs have a rich set of tools available to examine
and understand the programs, using these tools, we present a
simple framework that dynamically finds the suitable number
of threads by observing OS level factors and show that the
number of threads suggested by the algorithm achieves near
optimal speedup. Our approach does not require recompilation
of the application or modifications to OS policies.

To understand the complex relationship between number of
threads, number of available cores, and the resulting speedups
for multithreaded programs on machines with larger number of
cores, we first conduct a performance study of eight PARSEC
programs on a 24 core Dell PowerEdge R905 machine running
OpenSolaris.2009.06. We study the performance of these
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Fig. 1: Binding (one-thread-per-core model) degrades performance.

programs for different numbers of threads ranging from a
few threads to 128 threads. Based on the scalability analysis of
these programs, we identify the OS level factors that explain
why an application has the best performance with only a
certain number of threads. Based on the observations, we
develop a framework called ‘Thread Reinforcer’ to dynamically
monitor program’s execution and OS level factors for finding
optimum number of threads that are expected to yield the best
speedup. While Thread Reinforcer is developed based on the
observations of PARSEC programs, it is also tested against
different multithreaded programs SPEC OMP and PBZIP2
programs. The overhead of Thread Reinforcer is very low and
it can be easily ported to any modern operating systems The
key contributions of this work are as follows:

• Our study of PARSEC shows that not only does the
maximum speedup achieved by these programs vary
widely (from 3.6x for canneal to 21.9x for swaptions), the
number of threads that produce maximum speedups also
vary widely (from 16 threads for facesim to 63 threads
for ferret). We observe that for five out of eight programs
the maximum speedup results from creating more threads
than the number of cores.

• While degree of parallelism, availability of additional
cores, and degree of lock contention were found to play an
important role in limiting performance, we also identified
additional factors. When the number of threads is less
than the number of cores the context switch rate plays
an important role. When the number of threads is greater
than the number of cores thread migrations performed by
the OS can limit the speedups.

• Based upon the above observations, we develop a frame-
work called ‘Thread Reinforcer’ for determining the
appropriate number of threads to create for an application.
The framework monitors the above factors at runtime and
uses the observations to guide the search for determining
the appropriate number of threads. The numbers of threads
determined by this algorithm are near optimal for most of
the applications from PARSEC, SPEC OMP, and PBZIP.

The remainder of this paper is organized as follows. Sec-
tion II presents the experimental setup, the speedups for eight
PARSEC programs for varying number of threads, and studies
the causes that limit the speedups. Section III presents Thread
Reinforcer framework for automatically finding number of
threads. Related work and conclusions are given in Sections 4
and 5.

TABLE I: Target Machine and OS.
DellTM PowerEdge R905:
24 Cores:

4 × 6-Core 64-bit AMD Opteron 8431 Processors (2.4 GHz);
L1 : 128 KB; Private to a core; L2 : 512 KB; Private to a core;
L3 : 6144 KB; Shared among 6 cores; Memory: 32 GB RAM;

Operating System: OpenSolaris 2009.06

TABLE II: PARSEC Programs Used: n is a command line argument
that determines the number of threads created.

Program Number of Threads Created
swaptions (main + workers) 1 + n
ferret (main + 6-stage pipeline) 1 + (1 + n + n + n + n + 1)
bodytrack (3-stage pipeline) 1 + n + 1
blackscholes (main + workers) 1 + n
canneal (main + workers) 1 + n
fluidanimate (main + workers) 1 + n
facesim (main + workers) 1 + (n-1)
streamcluster (main + workers) 1 + n

II. Scalability Study and Analysis
A. Experimental Setup

Target Machine and Operating System: Our experimental
setup consists of a Dell PowerEdge R905 server whose
configuration is shown in Table I. As we can see this machine
has 24 cores. We carried out this study using OpenSolaris
operating systems as there is a rich set of tools available to
examine and understand the behavior of programs running
under OpenSolaris. We ran each experiment 10 times and
present average results for the ten runs.

Applications Used: In this study we use eight programs
from the PARSEC suite – we could not use some of the
PARSEC programs because we were unable to get them to
compile and run under OpenSolaris. The eight programs used
in this work are described in Table II. For each program the
number of threads used is also described. Each program takes
a command line argument n and then uses it in determining
how many threads to create. As we can see from the table,
ferret and bodytrack are pipelined into six and three stages.
While the first and last stages consist of one thread each, the
intervening stages have n threads each. The rest of the programs
consist of a single main thread and multiple number of worker
threads whose number is determined based upon the value of
n. By varying the value of n we can run each application using
different number of threads. The implementations are based
upon pthreads and native inputs are used in all our experiments.
The maximum number of threads was limited to 128 in this
work as this was more than sufficient to study the full range
of program’s behavior on the 24 core Dell PowerEdge R905
server. We also evaluated the framework against seven SPEC
OMP programs and PBZIP2 program.
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B. Tuning the Implementation of Applications.
Previous studies of PARSEC have been carried out for

machine configurations with a small number of cores (2, 4,
or 8). It has been observed that the performance of these
programs scales well for a small number of cores. However,
since we are conducting a study which considers the scalability
of these application programs for larger number of cores, we
first examined the programs to see if their implementations
require any tuning consistent with the use of a larger number of
cores. Our study of the applications revealed two main issues
that required tuning of implementations. First, for programs that
make extensive use of heap memory, to avoid the high overhead
of malloc [36], we used the libmtmalloc library to allow
multiple threads to concurrently access to heap. Second, in
some applications where the input load is not evenly distributed
across worker threads, we improved the load distribution code.

By tuning the implementations in the above fashion, the
performance for seven out of eight applications considered
was improved. In some cases the improvements are small
(ferret, blackscholes, streamcluster, and bodytrack), moderate
improvement was observed in case of fluidanimate, and
very high improvement was observed for swaptions. The
improvement in swaptions can be explained as follows. We
observed dramatic reduction in locking events when we switch
from malloc to mtmalloc in a run where 24 worker threads
are used. In the original swaptions worker thread code the
input load of 128 swaptions is distributed across 24 threads as
follows: five swaptions each are given to 23 threads; and 13
swaptions are assigned to the 24th thread. This is because the
code first assigns equal load to all threads and all remaining
load to the last thread. When the number of threads is large, this
causes load imbalance. To remove this imbalance, we modified
the code such that it assigns six swaptions each to eight threads
and five swaptions each to the remaining 16 threads. This is
because instead of assigning the extra load to one thread, we
distribute it across multiple threads.

C. Performance for Varying Number of Threads
We ran each program for varying number of threads and

collected the speedups observed. Each program was run ten
times and speedups were averaged over these runs. Table III
shows the maximum speedup (Max Speedup) for each program
on the 24-core machine along with the minimum number of

TABLE III: Maximum speedups observed and corresponding number
of threads for PARSEC programs on the 24-core machine. Programs
were run from a minimum of 4 threads to a maximum of 128 threads.

Program Tuned Version Original
Max
Speedup

OPT
Threads

Max
Speedup

OPT
Threads

swaptions 21.9 33 3.6 7
ferret 14.1 63 13.7 63
bodytrack 11.4 26 11.1 26
blackscholes 4.9 33 4.7 33
canneal 3.6 41 no change
fluidanimate 12.7 21 12 65
facesim 4.9 16 4.6 16
streamcluster 4.2 17 4.0 17

threads (called OPT Threads) that produced this speedup. The
data is provided for both the tuned version of the program and
the original version of the program. As we can see, tuning
resulted in improved performance for several programs. In the
rest of the paper we will only consider the tuned versions of
the program.

As we can see from Table III, not only does the maximum
speedup achieved by these programs vary widely (from 3.6x
for canneal to 21.9x for swaptions), the number of threads
that produce maximum speedups also varies widely (from 16
threads for facesim to 63 threads for ferret). Moreover, for the
first five programs the maximum speedup results from creating
more threads than the number of cores, i.e. OPT-Threads is
greater than 24. For the other three programs OPT-Threads is
less than the number of cores.

The above observation that the value of OPT-Threads varies
widely is significant – it tells us that the choice of number of
threads that are created is an important one. Experiments in
prior studies involving PARSEC [2], [4], [24] were performed
for configurations with a small number of cores (4 and 8).
In these studies the number of threads was typically set to
equal the number of cores as this typically provided the best
performance. However, the same approach cannot be taken
when machines with larger number of cores are being used. In
other words, we must select appropriate number of threads to
maximize the speedups obtained.

To observe how the speedup varies with the number of
threads we plot the speedups for all our experiments in Figure 2.
The graph on the left shows the speedups for programs for
which OPT-Threads is greater than 24 and the graph on the
right shows the speedups for the programs for which OPT-
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where maximum speedup was observed for Number o f T hreads > Number o f Cores = 24; and The graph on the right shows the behavior of
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Threads is less than 24. The programs with OPT-Threads
greater than 24 exhibit different behaviors. The speedups for
swaptions and ferret scale well with the number of threads with
maximum speedups resulting from use of 33 and 63 threads
respectively. While bodytrack provides substantial speedups,
once maximum speedup of 11.6 is achieved with 26 threads,
the speedups starts to fall gradually as more threads are added.
The speedups of blackscholes and canneal increase very slowly
with the number of threads due do lack of parallelism in these
programs. For programs with OPT-Threads less than 24, once
the number of threads reaches OPT-Threads, speedups fall as
additional threads are created. This behavior is the result of
lock contention that increases with the number of threads.
D. Factors Determining Scalability

In this section we present additional data collected with
the aim of understanding the factors that lead to the observed
speedup behaviors presented in Figure 2. Using the prstat [7]
utility, we studied the following main components of the
execution times for threads in each application.

1) User: The percentage of time a thread spends in user mode.
2) System: The percentage of time a thread spends in processing

the following system events: system calls, system traps, text
page faults, and data page faults.

3) Lock-contention: The percentage of time a thread spends
waiting for user locks, condition-variables etc.

4) Latency: The percentage of time a thread spends waiting for
a CPU. In other words, although the thread is ready to run, it
is not scheduled on any core.

Program Critical Threads
ferret Rank stage Threads
canneal Main Thread
swaptions Worker Threads
blackscholes Main Thread
bodytrack All Threads
fluidanimate Worker Threads
streamcluster Worker Threads
facesim All Threads
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Fig. 3: Breakdown of elapsed time of critical threads.
We studied the above times for all threads to see if changes

in these times would explain the changes in speedups observed
by varying number of threads. Although we examined the
data for all threads, it quickly became apparent that in many
programs not all threads were critical to the overall speedup.
We identified the critical threads and studied them in greater
detail. The critical threads for each application are listed in the
table below. Figure 3 provides the breakdown of the time of
critical threads in the above four categories – this data is for the
OPT-Threads run and is the average across all critical threads.

As we can see, in some programs lock-contention (LCK) plays
a critical role, in others the threads spend significant time
waiting for a CPU as latency (LAT) is high, and the system
time (SYS) is the highest for canneal and blackscholes.

In the remainder of this section we analyze the above
times for each of the programs in greater detail to study their
relationship with speedup variations that are observed when
number of threads is varied. We further identify the program
characteristics that are the causes for the observed speedup
variations.
1) OPT-Threads > Number of Cores

Scalable Performance. As we can see from the graph on
the left in Figure 2, for three programs (swaptions, bodytrack,
and ferret) in this category, the speedups scale quite well. As
the number of threads is varied from a few threads to around 24,
which is the number of cores, the speedup increases linearly
with the number of threads. However, once the number of
threads is increased further, the three programs exhibit different
trends as described below:
• (Erratic) swaptions: Although the speedup for swaptions

can be significantly increased -- from 20 for 25 threads
to 21.9 for 33 threads -- its trend is erratic. Sometimes
the addition of more threads increases the speedup while
at other times an increase in number of threads reduces
the speedup.

• (Steady Decline) bodytrack: The speedup for bodytrack
decreases as the number of threads is increased beyond
26 threads. The decline in speedup is quite steady.

• (Continued Increase) ferret: The speedup for ferret con-
tinues to increase linearly. In fact the linear increase in
speedup is observed from the minimum number of 6
threads all the way up till 63 threads. Interestingly no
change in behavior is observed when the number of threads
is increased from less than the number of cores to more
than the number of cores.

Next we trace the differing behaviors back to specific charac-
teristics of these programs.

swaptions: First let us consider the erratic behavior of
speedups observed in swaptions. We first examined the lock
contention and latency information. As shown in Figure 4(a),
the lock contention (LOCK) is very low and remains very
low throughout and the latency (LAT) increases steadily which
shows that the additional threads created are ready to run but
are simply waiting for a CPU (core) to become available. This
keeps the execution time to be the same. Therefore we need
to look elsewhere for an explanation. Upon further analysis
we found that the speedup behavior is correlated to the thread
migration rate. As we can see from Figure 4(b), when the
migration rate goes up, the speedup goes down and vice versa
– the migration rate was measured using the mpstat [7] utility.
Migrations are expensive events as they cause a thread to pull
its working set into cold caches, often at the expense of other
threads [7]. Thus, the speedup behavior is a direct consequence
of changes in thread migration rate.

The OS scheduler plays a significant role here as it is
responsible for making migration decisions. When a thread
makes a transition from sleep state to a ready-to-run state, if
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TABLE IV: Behavior of ferret.
Total n Load (1) Segment (n) Extract (n) Vector (n) Rank (n) Out (1) Speedup
Threads USR SYS LOCK USR LOCK USR LOCK USR LOCK USR LOCK USR LOCK
15 3 22 4 74 8 92 1 99 44 56 100 0 0.5 99.3 3.3
31 7 44 7.8 48 6.7 93 1 99 43 57 100 0 0.6 99 7.5
47 11 56 11.3 32 5.4 95 1 99 40 60 100 0 0.7 99 11.5
55 13 64 14 19 5 95 1 99 44 56 98 0 0.7 99 12.5
63 15 79 20 0 5 95 1 99 43 57 96 0 0.7 99 14.1
71 17 77 20 0 5 95 1 99 37 63 80 16 0.7 99 13.8
87 21 78 17 0 4 96 1 99 28 72 65 33 0.4 99.3 13.7
103 25 75 17 0 3 97 1 99 24 76 53.5 45 0.4 99.3 13.4
119 29 74 17 0 3 97 1 99 20 80 46 52.5 0.4 99.4 13.2
127 31 70 20 0 3 97 1 99 19 81 40 59 0.4 99.4 13.1
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Fig. 4: swaptions: Cause of Erratic Speedup Changes.

the core on which it last ran is not available, the thread is likely
to be migrated to another available core. In general, one would
expect more migrations as the number of threads increases
beyond the number of cores. However, if the number of threads
is divisible by the number of cores, then the likelihood of
migrations is less compared to when this is not the case. In
the former case, the OS scheduler can allocate equal number
of threads to each core, balancing the load, and thus reducing
the need for migrations. Thus we conclude that variations in
degree of load balancing across cores causes corresponding
variations in thread migration rate and hence the observed
speedups. For example, in Figure 4(b), the thread migration
rate for 48 threads on 24 cores is lower than thread migration
rate for 40 threads on 24 cores. Moreover, we can expect low
thread migration rate when the input load (128 swaptions) is
perfectly divisible by the number of threads (e.g., 16, 32, 64
etc.).

bodytrack: Next let us consider the steady decline in speedup
observed for bodytrack. Figure 5(a) shows that although the
latency (LAT) rises as more threads are created, so does the
lock contention (LOCK) which is significant for bodytrack.
In addition, bodytrack is an I/O intensive benchmark where
I/O is performed by all the threads. We observed that this
program produces around 350 ioctl() calls per second. Both
lock contention and I/O have the consequence of increasing the
thread migration rate. This is because both lock contention and
I/O result in sleep to wakeup and run to sleep state transitions
for the threads involved. When a thread wakes up from the
sleep state, the OS scheduler immediately tries to give a core
to that thread, if it fails to schedule the thread on the same
core that it used last, it migrates the thread to another core.
As we can see from Figure 5(b), the thread migration rate for
bodytrack rises with the number of threads which causes a
steady decline in its speedup.

ferret: The behavior of this program is interesting as the
speedup for it increases linearly starting from 6 threads to
all the way up to 63 threads even though only 24 cores are
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Fig. 5: bodytrack: Cause of Decline in Speedup.

available. To understand this behavior we need to examine
the program in greater detail. The program is divided into six
pipeline stages – the results of processing in one stage are
passed on to the next stage. The stages are: Load, Segment,
Extract, Vector, Rank, and Out. The first and last stage have a
single thread but each of the intermediate stages are a pool of
n threads. Between each pair of consecutive stages a queue is
provided through which results are communicated and locking
is used to control queues accesses.

The reason for the observed behavior is as follows. The
Rank stage performs most of the work and thus the speedup
of the application is determined by the Rank stage. Moreover
the other stages perform relatively little work and thus their
threads together use only a fraction of the compute power of
the available cores. Thus, as long as cores are not sufficiently
utilized, more speedup can be obtained by creating additional
threads for the Rank stage. The maximum speedup of 14.1 for
ferret was observed when the total number of threads created
was 63 which actually corresponds to 15 threads for Rank
stage. That is, the linear rise in speedup is observed from 1
thread to 15 threads for the Rank stage which is well under the
total of 24 cores available – the remaining cores are sufficient
to satisfy the needs of all other threads.

The justification of the above reasoning can be found in
the data presented in Table IV where we show the average
percentage of USR and LOCK times for all stages and SYS
time for only Load stage because all other times are quite
small. The threads belonging to Segment, Extract, and Out
stages perform very little work and mostly spend their time
waiting for results to become available in their incoming queues.
While the Load and Vector stages do perform significant amount
of work, they nevertheless perform less work than the Rank
stage. The performance of the Rank stage determines the overall
speedup – adding additional threads to the Rank stage continues
to yield additional speedups as long as this stage does not
experience lock contention. Once lock contention times start
to rise (starting at n = 17), the speedup begins to fall.
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Fig. 6: Maximum Speedup When Number of Threads < Number of Cores.
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Fig. 7: Voluntary Context Switch Rate.

To further confirm our observations above we ran an
experiment in which we increased the number of threads in
the Rank stage and lowered the number of threads in other
intermediate stages. We found that the configuration with (1,
10, 10, 10, 16, 1) threads gave a speedup of 13.9 and when
we changed the configuration to (1, 16, 16, 16, 16, 1) threads
the speedup remained the same. This further confirms the
importance of the Rank stage.

Performance Does Not Scale. (blackscholes and canneal)
Although the maximum speedups of these programs (4.9
and 3.6) are observed when 32 and 40 worker threads are
created, the speedups of both these programs increase very
little beyond 16 worker threads. This is because most of the
work is performed by the main thread and the overall CPU
utilization becomes low. The main thread takes up 85% and
70% of the time for blackscholes and canneal respectively.
During rest of the time the parallelized part of the program
is executed by worker threads. The impact of parallelization
of this limited part on the overall speedup diminishes with
increasing number of threads.
2) OPT-Threads < Number of Cores

The three programs where maximum speedup was achieved
using fewer threads than number of cores are fluidanimate,
facesim, and streamcluster. In these programs the key factor
that limits performance is lock contention. Figure 6 shows that
the time due to lock contention (LOCK) dramatically increases
with number of threads while the latency (LAT) shows modest
or no increase. The maximum speedups are observed at 21
threads for fluidanimate, 16 threads for facesim, and 17 threads
for streamcluster.

When the number of threads is less than the number of cores,
the load balancing task of the OS scheduler becomes simple
and thread migrations become rare. Thus, unlike swaptions and
bodytrack where maximum speedups were observed for greater
than 24 threads, thread migration rate does not play any role in

TABLE V: Voluntary vs. Involuntary Context Switches.
Program VCX (%) ICX (%)
fluidanimate 84 16
facesim 97 3
streamcluster 94 6
swaptions 11 89
ferret 13 87

the performance of the three programs considered in this section.
However, the increased lock contention leads to slowdowns
because of increased context switch rate. We can divide context-
switches into two types: involuntary context-switches (ICX)
and voluntary context-switches (VCX). Involuntary context-
switches happen when threads are involuntary taken off a
core (e.g., due to expiration of their time quantum). Voluntary
context-switches occur when a thread performs a blocking
system call (e.g., for I/O) or when it fails to acquire a lock.
In such cases a thread voluntarily releases the core using the
yield() system call before going to sleep using lwp_park()
system call. Therefore as more threads are created and lock
contention increases, VCX context switch rate rises as shown
in Figure 7. It is also worth noting that most of the context
switches performed by the three programs are in the VCX
category. We measured the VCX and ICX data using the prstat
utility. Table V shows that the percentage of VCX ranges from
84% to 97% for the three programs considered here. In contrast,
the VCX represents only 11% and 13% of context switches
for swaptions and ferret.

Since the speedup behavior of an application correlates
with variations in LOCK, MIGR_RATE, VCX_RATE, and
CPU_UTIL, in the next section we develop a framework for
automatically determining the number of threads by runtime
monitoring of the above characteristics.

III. The Thread Reinforcer Framework
The applications considered allow the user to control the

number of threads created using the command line argument
n in Table II. Since our experiments show that the number of
threads that yield peak performance varies greatly from one
program to another, the selection of n places an added burden
on the user. Therefore, in this section, we develop a framework
for automatically selecting the number of threads.

The framework we propose runs the application in two steps.
In the first step the application is run multiple times for short
durations of time during which its behavior is monitored and
based upon runtime observations Thread Reinforcer searches
for the appropriate number of threads. Once this number is
found, in the second step, the application is fully reexecuted
with the number of threads determined in the first step. We
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TABLE VI: Factors considered wrt to the number of threads.
Factor ≤ 24 Threads > 24 Threads
LOCK Yes Yes
VCX_RATE Yes -
MIGR_RATE - Yes
CPU_UTIL Yes Yes

have to rerun the applications for short durations because the
applications are written such that they do not support varying
of number of threads online. Thus, Thread Reinforcer does not
consider phase changes of the target program. However, out
of the 16 programs tested, only the ammp program shows two
significantly different phases and its first phase dominates the
execution. Therefore Thread Reinforcer works well also for
the ammp program.

Each time an application is to be executed on a new input,
Thread Reinforcer is used to determine the appropriate number
of threads for that input. This is done in order to handle
applications whose runtime behavior is input dependant and
thus the optimal number of threads may vary across inputs.
Our goal is twofold: to find the appropriate number of threads
and to do so quickly so as to minimize runtime overhead. The
applications we have considered take from tens of seconds
to a few hundred seconds to execute in the OPT-Threads
configuration. Therefore, we aim to design Thread Reinforcer
so that the times it takes to search for appropriate number of
threads is only a few seconds. This ensures that the benefits
of the algorithm outweigh the runtime overhead of using it.

Thread Reinforcer searches for appropriate number of threads
in the range of Tmin and Tmax threads as follows. It runs the
application for increasing number of threads for short time
durations. Each successive run contains either Tstep or Tstep/2
additional threads. The decision of whether or not to run
the program for higher number of threads and whether to
increase the number of threads by Tstep or Tstep/2, is based
upon changes in profiles observed over the past two runs. The
profile consists of four components: LOCK (lock contention),
MIGR_RAT E (thread migration rate), VCX_RAT E (voluntary
context switch rate), and CPU_UT IL (processor utilization).
The values of each of these measures are characterized as either
low or high based upon set thresholds for these parameters.
Our algorithm not only examines the current values of above
profiles, it also examines how rapidly they are changing. The
changes of these values over the past two runs are denoted
as ∆LOCK, ∆MIGR_RATE, ∆VCX_RATE, and ∆CPU_UTIL.
The changes are also characterized as low and high to indicate
whether the change is gradual or rapid. At any point in the
most penultimate run represents the current best solution of
our algorithm and the last run is compared with the previous
run to see if it should be viewed as an improvement over the
penultimate run. If it is considered to be an improvement, then
the last run becomes our current best solution. Based upon
the strength of improvement, we run the program with Tstep
or Tstep/2 additional threads. The above process continues as
long as improvement is observed. Eventually Thread Reinforcer
terminates if no improvement or degradation is observed, or we
have already reached the maximum number of threads Tmax.

Table VI identifies the components that play an important
role when the number of threads is no more than the number
of cores (i.e., 24) versus when the number of threads is greater

than the number of cores. The lock contention is an important
factor which must be considered throughout. However, for ≤ 24
threads the VCX_RAT E is important while for > 24 threads
the MIGR_RAT E is important to consider. In general, the limit
of parallelism for a program may reach at any time. Thus
CPU_UT IL is an important factor to consider throughout. The
above observations are a direct consequence of our observations
made during the study presented earlier.

Figure 8 presents Thread Reinforcer in detail. Thread Rein-
forcer is initiated by calling FindN() and when it terminates it
returns the value of command like parameter n that is closest
to the number of threads that are expected to give the best
performance. FindN() is iterative – it checks for termination by
calling Terminate() and if termination conditions are not met,
it calls ComputeNextT () to find out the number of threads that
must be used in the next run. Consider the code for Terminate().
It first checks if processor utilization has increased from the
penultimate run to the last run. If this is not the case then the
algorithm terminates otherwise the lock contention is examined
for termination. If lock contention is high then termination
occurs if one of the following is true: lock contention has
increased significantly; number of threads is no more than the
number of cores and voluntary context switch rate has sharply
increased; or number of threads is greater than the number of
cores and thread migration rate has sharply increased. Finally,
if the above termination condition is also not met we do not
terminate the algorithm unless we have already reached the
upper limit for number of threads. Before iterating another step,
the number of additional threads to be created is determined.
ComputeNextT () does this task – if the overheads of locking,
context switches, or migration rate increase slowly then Tstep
additional threads are created; otherwise Tstep/2 additional
threads are created.

We implemented Thread Reinforcer to evaluate its effective-
ness in finding appropriate number of threads and study its
runtime overhead. Before experimentation, we needed to select
the various thresholds used by Thread Reinforcer. To guide the
selection of thresholds we used three of the eight programs:
fluidanimate, facesim, and blackscholes. We ran these selected
programs on small inputs: for fluidanimate and blackscholes we
used the simlarge input and for facesim we used the simsmall
input. We studied the profiles of the programs and identified
the threshold values for LOCK, MIGR_RATE, VCX_RATE,
CPU_UTIL as follows. The threshold values were chosen
such that after reaching the threshold value, the value of the
profile characteristic became more sensitive to the number of
threads and showed a rapid increase. There are two types of
threshold values: absolute thresholds and ∆ thresholds. The ∆

threshold indicates how rapidly the corresponding characteristic
is changing. For LOCK and VCX_RATE both thresholds are
used by our algorithm. For MIGR_RATE and CPU_UTIL
only ∆ threshold is used. It should be noted that the three
programs that were chosen to help in selection of thresholds
collectively cover all four of the profile characteristics: for
fluidanimate both LOCK and MIGR_RATE are important;
for facesim VCX_RATE is important; and for blackscholes
CPU_UTIL is important.
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TABLE VII: Algorithm vs. Optimal (PARSEC programs).
Program Number of Threads Speedups

Algorithm Optimal Algorithm Optimal
facesim 16 16 4.9 4.9
bodytrack 26 26 11.4 11.4
swaptions 33 33 21.9 21.9
ferret 63 63 14.1 14.1
fluidanimate 25 21 12.2 12.7
streamcluster 25 17 4.0 4.2
canneal 9 41 2.9 3.6
blackscholes 9 33 3.7 4.9

TABLE VIII: Termination Condi-
tions for PARSEC Programs.

Program Condition
facesim VCX_RATE
bodytrack MIGR_RATE
swaptions LOCK
ferret LOCK
fluidanimate LOCK
streamcluster MIGR_RATE
canneal CPU_UTIL
blackscholes CPU_UTIL

TABLE IX: Search Overhead (seconds) for PARSEC
programs.

Program Tsearch Tparallel Percentage
canneal 0.5 131 0.4%
facesim 1.1 186 0.6%
blackscholes 0.5 85 0.6%
streamcluster 3.2 226 1.4%
fluidanimate 1.5 69 2.2%
ferret 1.3 41.9 3.1%
bodytrack 1.6 43.8 3.7%
swaptions 0.9 21.3 4.2%

TABLE X: Algorithm vs. Optimal (Other programs).
Program Number of Threads Speedups

Algorithm Optimal Algorithm Optimal
ammp 24 24 11.8 11.8
art 32 32 8.8 8.8
fma3d 16 20 5.5 5.7
gafort 64 48 9.7 9.8
mgrid 16 16 5.0 5.0
swim 32 24 3.9 4.0
wupwise 24 24 8.6 8.6
pbzip2 24 28 6.7 6.9

TABLE XI: Termination Condi-
tions for Other Programs.

Program Condition
ammp MIGR_RATE
art LOCK
fma3d LOCK
gafort CPU_UTIL
mgrid VCX_RATE
swim CPU_UTIL
wupwise CPU_UTIL
pbzip2 CPU_UTIL

TABLE XII: Search Overhead (seconds) for Other
programs.

Program Tsearch Tparallel Percentage
ammp 0.9 267.1 0.3%
art 1.3 62.8 2.1%
fma3d 0.7 23 3.0%
gafort 1.6 238.9 0.7%
mgrid 0.7 32.1 2.2%
swim 1.3 302.4 0.4%
wupwise 1.2 162.5 0.7%
pbzip2 1.1 201.3 0.6%

In our experiments we ran all eight PARSEC programs
considered in this work and all the programs were run on native
inputs – note that the thresholds were selected by running only
three programs using small inputs. The number of threads
was varied in the range of 8 (Tmin) to 72 (Tmax) threads and
Tstep was set to 8 threads. The time interval for which an
application was profiled in each iteration of our algorithm was
set to 100 milliseconds beyond the initial input reading phase
of each application. The profiling utilities prstat and mpstat by
default use a 1 second interval, i.e. this is the minimum timeout
value we could have used with the default implementation. To
minimize the runtime overhead of our algorithm we wanted to
use smaller time intervals. Therefore we modified these utilities
to allow time intervals with millisecond resolution.

Table VII presents the number of threads found by Thread
Reinforcer and compares it with the OPT-Threads number that
was reported earlier in the paper. The corresponding speedups
for these number of threads are also reported. From the results
we can see that for the first four programs (facesim, bodytrack,
swaptions, ferret) the number of threads found by our algorithm
is exactly the same as OPT-Threads. For the next two programs,
fluidanimate and streamcluster, the numbers are close as they
differ by Tstep/2(= 4) and Tstep(= 8) respectively. The loss
in speedups due to this suboptimal choice of the number of
threads in quite small. For the last two programs, canneal and
blackscholes, the number of threads Thread Reinforcer selects
is much smaller than OPT-Threads.

Table VIII shows the conditions which caused the termination
of Thread Reinforcer. For six of these programs lock contention,
migration rate, and voluntary context switch rate play an
important role. For the other two programs the programs
terminate because improvement in the CPU_UTIL is small and
hence Thread Reinforcer terminates assuming that there is no
more parallelism in the application. The termination condition
for canneal and blackscholes explains why the number of
threads selected by our algorithm differs greatly from the
OPT-Threads value. The speedup of these programs rises very
slowly and thus the change in CPU_UTIL is quite low. For
the threshold setting we have used Thread Reinforcer simply
concludes that there is no longer any need to add threads as

there is no more parallelism to exploit.
Finally we consider the search overhead of Thread Reinforcer

for PARSEC programs. Table IX shows the times for the search
and parallel execution for each of the programs. As we can
see from the table, the search times vary from 0.5 seconds to
3.2 seconds while the parallel execution times of the programs
range from 21.9 seconds to 226 seconds. The final column
shows the search time as a percentage of parallel execution
time for each program. The programs are listed in increasing
order of this percentage value. For the first three programs this
percentage is extremely small – ranging from 0.4% to 0.6%.
For the remaining programs these percentages are between
1.4% and 4.2%. Thus, the runtime overhead of our algorithm
is quite small. Therefore it can be used to select the number
of threads when an application is run on a new input.

A. Thread Reinforcer Against Other Programs
Since Thread Reinforcer uses the thresholds of PARSEC

programs, we would like to see how Thread Reinforcer works
for programs other than PARSEC. For this, we tested Thread
Reinforcer against seven SPEC OMP programs and PBZIP2
program, a total of eight other programs. Table X lists the
programs, and also presents the number of threads found
by Thread Reinforcer and compares it with the OPT-Threads
number.

Table XI shows the conditions which caused the termination
of Thread Reinforcer. For four of these programs CPU
utilization (no more parallelism to exploit), and for other
four programs lock contention, migration rate, and voluntary
context switch rate play an important role. Table XII shows
that the search overhead is very low compared to the parallel
execution-time of the programs. Therefore, Thread Reinforcer
can be used to find the optimum number of threads of
multithreaded applications, moreover this experiment shows
that the thresholds are broadly applicable.

B. Limitations
Initialization Period: An important limitation of the current

implementation of Thread Reinforcer is that it works well for
applications that have short initialization period (i.e., creation
of worker threads early in the execution is observed). Since the
current implementation of the applications studied do not allow
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us to assign arbitrary number of threads at run-time, we need
to rerun the applications for finding the optimum number of
threads. Therefore, if the initialization period of an application
is too long then the search overhead increases and benefits of

– Convert() converts number of threads into command line param. value;
– Profile P =<CPU_UT IL,LOCK,VCX_RAT E,MIGR_RAT E >;
– (Tbest ,Nbest ) is the current best solution; Pbest is its profile;
– (Ttry,Ntry) is the next solution tried; Ptry is its profile;
– ∆P. f ield = Ptry. f ield−Pbest . f ield;
– low returns true/false if P. f ield or ∆P. f ield is low/not low;
– high returns true/false if P. f ield or ∆P. f ield is high/not high;
– Tstep is increments in which number of threads is increased;
– Tmin/Tmax is minimum/maximum number of threads allowed;

FindN() {
Tbest ← Tmin; Nbest ←Convert(Tbest );
Pbest ← Collect profile for 100 milliseconds run with parameter Nbest .

Ttry← Tmin +Tstep; Ntry←Convert(Ttry);
Ptry← Collect profile for 100 milliseconds run with parameter Ntry.

loop
if Terminate(Pbest ,Ptry) = true then

return(Nbest )
else

Tbest ← Ttry; Nbest ← Ntry; Pbest ← Ptry
Ttry←ComputeNextT (Pbest ,Ptry);
Ntry←Convert(Ttry);
Ptry← Collect profile for 100 milliseconds run with parameter Ntry.

endif
endloop

}

ComputeNextT (Pbest ,Ptry) {
if Ttry ≤ NumCores then

if low(Ptry.LOCK) or low(Ptry.∆VCX_RAT E) or
(high(Ptry.LOCK) and low(Ptry.∆LOCK))

then
∆T = Tstep

else
∆T = Tstep/2

endif
else – Ttry > NumCores

if low(Ptry.LOCK) or low(Ptry.∆MIGR_RAT E) then
∆T = Tstep

else
∆T = Tstep/2

endif
endif
return( minimum(Ttry +∆T,Tmax) )

}

Terminate(Pbest ,Ptry) {
– terminate if no more parallelism was found
if low(Ptry.∆CPU_UT IL) then return(true) endif

– terminate for high lock contention, VCX rate, and migration rate
if high(Ptry.LOCK) then

if high(Ptry.∆LOCK) or
Ttry ≤ NumCores and high(Ptry.∆VCX_RAT E) or
Ttry > NumCores and high(Ptry.∆MIGR_RAT E)

then
return(true)

endif
endif

– terminate if no more threads can be created
if Ttry = Tmax then

Tbest ← Ttry; Nbest ← Ntry; return(true)
endif

– otherwise do not terminate
retrun( f alse)

}

Fig. 8: FindN() returns the best value for command line parameter,
Nbest , which corresponds to the appropriate number of threads
determined for running the application. It is an iterative algorithm
that calls Terminate to see if it is time to terminate the search with
current value of Nbest or whether to increase the number of threads
to the number returned by ComputeNextT().

Thread Reinforcer will decline. However, the implementation
can be adapted such that we rerun the application from the
starting point of the worker threads invocation.

Phase Changes: Thread Reinforcer does not consider phase
changes of the target program. However, out of 16 programs
tested, only ammp program shows two significantly different
phases and its first phase dominates the whole execution. Thus,
Thread Reinforcer works well for it also.

Cache Sharing: Since the focus of our work is on the effect
of OS level factors on the scalability of multithreaded programs,
other factors such as architectural factors including cache
sharing is outside the scope of this work.

IV. Related Work
Dynamically finding a suitable number of threads for a

multi-threaded application to optimize performance in a multi-
core environment is an important problem. While this issue
has been studied in context of quad-core and 8-core systems,
it has not been studied for systems with larger number of
cores. When number of cores is small it is often recommended,
that number of threads created equal the number of cores. In
contrast our work demonstrates that on a 24 core system many
of the PARSEC programs require much more than 24 threads
to maximize speedups (e.g., ferret requires 63 threads to get
the highest speedup).

Controlling Number of Threads. In [6], Lee et al. show how
to adjust number of threads in an application dynamically to
optimize system efficiency. They develop a run-time system
called “Thread Tailor” which uses dynamic compilation to
combine threads based on the communication patterns between
them in order to minimize synchronization overhead and
contention of shared resources (e.g., caches). They achieve
performance improvements for three PARSEC programs on
quad-core and 8-core systems. However, they used a baseline
of number of threads equals the number of cores (4 or 8) for
performance comparisons and they did not present the optimal
number of threads resulting from their technique.

To improve performance and optimize power consumption
for OpenMP based multi-threaded workloads, Suleman et al.
[8], proposed a framework that dynamically controls number of
threads using runtime information such as memory bandwidth
and synchronization. They show that there is no benefit of using
larger number of threads than the number of cores. Similarly,
Nieplocha et al. [9] demonstrate that some applications saturate
shared resources as few as 8 threads on an 8-core Sun
Niagara processor. Curtis-Maury et al., [28] predict efficient
energy-concurrency levels for parallel regions of multithreaded
programs using machine learning techniques. Thus once again
the above works considered small number of cores and used
one-thread-per-core binding model.

Jung et al. [10], presented performance estimation models
and techniques for generating adaptive code for quad-core
SMT multiprocessor architectures. The adaptive execution
techniques determine an optimal number of threads using
dynamic feedback and run-time decision runs. Similarly, Kunal
et al. [20] proposed an adaptive scheduling algorithm based
on the feedback of parallelism in the application. Many other
works that dynamically control number of threads are aimed at
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studying power performance trade-offs [11]–[13], [25], [27].
Unlike the above, Barnes et al. [33] presented regression tech-
niques to predict parallel program scaling behavior (processor
count). Singh et al., [25] presented scalability prediction models
of parallel applications on a multicore system.

The Effect of OS level factors & Scheduling Techniques.
Some studies [21]–[23] investigate the performance implica-
tions of thread migrations on multi-core machines. Several
researchers [14]–[17] use application performance and concur-
rency characteristics such as speedup, execution time, synchro-
nization information to make better scheduling decisions for
parallel applications. Ferreira et al. [18] showed how to quantify
the application performance costs due to local OS interference
on a range of real-world large-scale applications using over
ten thousand nodes, and [19] identifies a major source of
noise to be indirect overhead of periodic OS clock interrupts,
that are used by all modern OS as a means of maintaining
control. [26] proposed a hardware-based and system software
configurable mechanism to achieve fairness goals specified
by system software in the entire shared memory system, and
consequently it allows to achieve desired fairness/performance
balance. In contrast our work focuses on selecting the number
of threads under the default scheduling schemes used by
OpenSolaris.

Several previous works [29], [31], [32] consider scheduling
techniques based upon different application characteristics (e.g.,
cache-usage) and dynamic estimates of the usage of system
resources. However, these techniques allocate the threads that
are provided and do not consider the impact of number of
threads on the characteristics of applications. Moreover, the
work [6] noted that the OS and hardware likely cannot infer
enough information about the application to make effective
choices such as determining how many number of threads an
application should leverage. However, we developed a simple
technique for dynamically determining appropriate number of
threads without recompiling the application or using complex
compilation techniques or modifying OS policies.

V. Conclusions
It is often assumed that to maximize performance the number

of threads created should equal the number of cores. While
this may be true for systems with 4 cores or 8 cores, this is not
true for systems with significantly larger number of cores. In
this paper we demonstrated this point by studying the behavior
of several multithreaded programs on a 24 core machine.
We studied the factors that limit the performance of these
programs with increasing number of threads in detail. Based
upon the results of this study, we developed Thread Reinforcer,
a framework for dynamically determining suitable number
of threads for a given application run. Thread Reinforcer is
not only effective in selecting the number of threads, it also
has very low runtime overhead in comparison to the parallel
execution time of the application.
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